Transport of marine tracer phage particles in soil

Viruses
/References

You, Xin, René Kallies, Konstanze Hild, Anke Hildebrandt, Hauke Harms, Antonis Chatzinotas, and Lukas Y. Wick. 2022. “Transport of Marine Tracer Phage Particles in Soil.” Science of the Total Environment 814 (March): 152704. https://doi.org/10.1016/j.scitotenv.2021.152704.

Marine phages have been applied to trace ground- and surface water flows. Yet, information on their transport in soil and related particle intactness is limited. Here we compared the breakthrough of two lytic marine tracer phages (Pseudoalteromonas phages PSA-HM1 and PSA-HS2) with the commonly used Escherichia virus T4 in soil- and sand-filled laboratory percolation columns. All three phages showed high mass recoveries in the effluents and a higher transport velocity than non-reactive tracer Br−. Comparison of effluent gene copy numbers (CN) to physically-determined phage particle counts or infectious phage counts showed that PSA-HM1 and PSA-HS2 retained high phage particle intactness (Ip > 81%), in contrast to T4 (Ip < 36%). Our data suggest that marine phages may be applied in soil to mimic the transport of (bio-) colloids or anthropogenic nanoparticles of similar traits. Quantitative PCR (qPCR) thereby allows for highly sensitive quantification and thus for the detection of even highly diluted marine tracer phages in environmental samples.

View full article

Recent Publications

As of 10 December 2021, coronavirus disease 2019 (COVID‐19) caused by SARS‐CoV‐2 accounted for 267 million people with up to 5.3 million deaths worldwide (https://covid19.who.int). Since late 2019, much progress has been made in response to the COVID‐19 pandemic, including the rapid developments of effective vaccines and the treatment guidelines consisting of antiviral drugs, immunomodulators, and critical care support (https://covid19.who.int). However, SARS‐CoV‐2 evolves over time as its genome has a high mutation rate that leads to reasonable concerns of breakthrough infection due to immune escape and resistant strain emergence under antiviral pressure (Lipsitch et al., 2021; Szemiel et al., 2021). A newly emerging Omicron (B.1.1.529) variant rings alarms around the globe that, perhaps, the COVID‐19 war has just begun. Relentless efforts should be made to advance our knowledge and treatment regimens against COVID‐19. These included studies of mesenchymal stem cell (MSC) therapy that aimed to mitigate cytokine storm and promote tissue repair in severely ill patients with COVID‐19 pneumonia and acute respiratory distress syndrome (ARDS) (Hashemian et al., 2021; Meng et al., 2020; Zhu et al., 2021). Nevertheless, as extensively discussed in a recent review by Dr. Phillip W. Askenase of Yale University School of Medicine, the immunomodulatory and regenerative effects of MSC therapy are mediated through MSC‐derived extracellular vesicles (MSC‐EVs) (Askenase, 2020), while the use of MSC‐EVs has less safety concerns of thromboembolism, arrhythmia and malignant transformation. In this direction, MSC‐EV investigations for COVID‐19 treatment would be more appealing and undeniable if MSC‐EVs also exhibit anti‐SARS‐CoV‐2 effects. A previous study revealed that MSC‐EVs pertained antiviral activity against influenza virus in a preclinical model (Khatri et al., 2018). It is known that MSCs are highly resistant to viral infections (Wu et al., 2018), including SARS‐CoV‐2 (Avanzini et al., 2021). We, therefore, hypothesized that the EVs released from MSCs could inhibit SARS‐CoV‐2 infection.

2022
No items found.
No items found.
No items found.