Oncolytic virus purification with periodic counter‐current chromatography

Viruses
/References

Virus-based biologicals are one of the most promising biopharmaceuticals of the 21st century medicine and play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. Oncolytic virus manufacturing scale can range from 5 L in research and development up to 50 L for clinical studies and reach hundreds of liters for commercial scale. The inherent productivity and high integration potential of periodic counter-current chromatography (PCC) offer a transversal solution to decrease equipment footprint and the reduction of several non-value-added unit operations. We report on the design of an efficient PCC process applied to the intermediate purification of oncolytic adenovirus. The developed ion-exchange chromatographic purification method was carried out using a four-column setup for three different scenarios: (i) variation in the feedstock, (ii) potential use of a post-load washing step to improve virus recovery, and (iii) stability during extended operation. Obtained virus recoveries (57%-86%) and impurity reductions (>80% DNA, and >70% total protein) match or overcome batch purification. Regarding process stability and automation, our results show that not only the dynamic control strategy used is able to suppress perturbations in the sample inlet but also allows for unattended operation in the case of ion exchange capture.

View full article

Recent Publications

As of 10 December 2021, coronavirus disease 2019 (COVID‐19) caused by SARS‐CoV‐2 accounted for 267 million people with up to 5.3 million deaths worldwide (https://covid19.who.int). Since late 2019, much progress has been made in response to the COVID‐19 pandemic, including the rapid developments of effective vaccines and the treatment guidelines consisting of antiviral drugs, immunomodulators, and critical care support (https://covid19.who.int). However, SARS‐CoV‐2 evolves over time as its genome has a high mutation rate that leads to reasonable concerns of breakthrough infection due to immune escape and resistant strain emergence under antiviral pressure (Lipsitch et al., 2021; Szemiel et al., 2021). A newly emerging Omicron (B.1.1.529) variant rings alarms around the globe that, perhaps, the COVID‐19 war has just begun. Relentless efforts should be made to advance our knowledge and treatment regimens against COVID‐19. These included studies of mesenchymal stem cell (MSC) therapy that aimed to mitigate cytokine storm and promote tissue repair in severely ill patients with COVID‐19 pneumonia and acute respiratory distress syndrome (ARDS) (Hashemian et al., 2021; Meng et al., 2020; Zhu et al., 2021). Nevertheless, as extensively discussed in a recent review by Dr. Phillip W. Askenase of Yale University School of Medicine, the immunomodulatory and regenerative effects of MSC therapy are mediated through MSC‐derived extracellular vesicles (MSC‐EVs) (Askenase, 2020), while the use of MSC‐EVs has less safety concerns of thromboembolism, arrhythmia and malignant transformation. In this direction, MSC‐EV investigations for COVID‐19 treatment would be more appealing and undeniable if MSC‐EVs also exhibit anti‐SARS‐CoV‐2 effects. A previous study revealed that MSC‐EVs pertained antiviral activity against influenza virus in a preclinical model (Khatri et al., 2018). It is known that MSCs are highly resistant to viral infections (Wu et al., 2018), including SARS‐CoV‐2 (Avanzini et al., 2021). We, therefore, hypothesized that the EVs released from MSCs could inhibit SARS‐CoV‐2 infection.

2022
No items found.
No items found.
No items found.