Tumour-associated Mucin1 correlates with the procoagulant properties of cancer cells of epithelial origin

Extracellular Vesicles
/References

Background Cancer-associated thrombosis (CAT) is caused, at least in part, by procoagulant factors produced by the tumour itself. Although MUC1 is an established biomarker for the diagnosis, immunotherapy, and prognosis of cancer, it is unclear whether it contributes to the procoagulant phenotype of cancer cells. Methods MUC1 knockdown breast cancer MCF-7 cells were used to investigate the influence of overexpression of MUC1 on procoagulant parameters. In addition, the effect of treating normal human epithelial cells with extracellular vesicles from several human breast and pancreatic cancer cell lines, which overexpress MUC1, was determined. The impact of a pharmacological anti-MUC1 antibody on cancer cells was also analysed. Results The level of a range of procoagulant proteins was observed to correlate with the MUC1 level of human breast and pancreatic cancer cell lines. MUC1 downregulation in MCF-7 cells led to a reduction in the procoagulant parameters particularly thrombin activity. The levels of selected tumorigenic markers, procoagulant proteins and miRNAs associated with tumorigenicity and thromboembolism were also modulated by treatment of normal cells with tumour cell derived extracellular vesicles in correlation with that of the extracellular vesicles donor cells. Moreover, the procoagulant properties were also reduced by an anti-MUC1 antibody in these cancer cells. Conclusions A range of procoagulant proteins found in human breast and pancreatic cancer cells were shown to exhibit a positive correlation with the level of MUC1 and thereby potentially contribute to the pathogenesis of CAT. The reduction of the procoagulant activity by MUC1 antibody could be an additional beneficial effect of its therapeutic efficacy. These findings also suggest that the level of tumour associated MUC1 could be of use as a risk factor for CAT.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.