Secreted phospholipase A2 modifies extracellular vesicles and accelerates B cell lymphoma

Extracellular Vesicles
/References

Extracellular vesicles (EVs) including exosomes act as intercellular communicators by transferring protein and microRNA cargoes, yet the role of EV lipids remains unclear. Here, we show that the pro-tumorigenic action of lymphoma-derived EVs is augmented via secreted phospholipase A2 (sPLA2)-driven lipid metabolism. Hydrolysis of EV phospholipids by group X sPLA2, which was induced in macrophages of Epstein-Barr virus (EBV) lymphoma, increased the production of fatty acids, lysophospholipids, and their metabolites. sPLA2-treated EVs were smaller and self-aggregated, showed better uptake, and increased cytokine expression and lipid mediator signaling in tumor-associated macrophages. Pharmacological inhibition of endogenous sPLA2 suppressed lymphoma growth in EBV-infected humanized mice, while treatment with sPLA2-modified EVs reversed this phenotype. Furthermore, sPLA2 expression in human large B cell lymphomas inversely correlated with patient survival. Overall, the sPLA2-mediated EV modification promotes tumor development, highlighting a non-canonical mechanistic action of EVs as an extracellular hydrolytic platform of sPLA2.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.