Proteomic Network of Antibiotic-Induced Outer Membrane Vesicles Released by Extensively Drug-Resistant Elizabethkingia anophelis

Extracellular Vesicles
/References

Elizabethkingia anophelis, a nonfermenting Gram-negative bacterium, causes life-threatening health care-associated infections. E. anophelis harbors multidrug resistance (MDR) genes and is intrinsically resistant to various classes of antibiotics. Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. OMVs specialize and tailor their functions by carrying different components to challenging environments and allowing communication with other microorganisms or hosts. In this study, we sought to understand the characteristics of E. anophelis OMVs under different antibiotic stress conditions. An extensively drug-resistant clinical isolate, E. anophelis C08, was exposed to multiple antibiotics in vitro, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Protein functionality analysis showed that the OMVs were predominantly involved in metabolism, survival, defense, and antibiotic resistance processes, such as the Rag/Sus family, the chaperonin GroEL, prenyltransferase, and an HmuY family protein. Additionally, a protein-protein interaction network demonstrated that OMVs from imipenem-treated E. anophelis showed significant enrichments in the outer membrane, adenyl nucleotide binding, serine-type peptidase activity, the glycosyl compound metabolic process, and cation binding proteins. Collectively, the OMV proteome expression profile indicates that the role of OMVs is immunologically relevant and related to bacterial survival in antibiotic stress environments rather than representing a resistance point. IMPORTANCE Elizabethkingia anophelis is a bacterium often associated with nosocomial infection. This study demonstrated that imipenem-induced E. anophelis outer membrane vesicles (OMVs) are immunologically relevant and crucial for bacterial survival under antibiotic stress conditions rather than being a source of antibiotic resistance. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by E. anophelis, especially under antibiotic stress. Our findings provide important insights into clinical antibiotic stewardship.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.