Plasma exosomal proteomic studies of corneal epithelial injury in diabetic and non-diabetic group

Extracellular Vesicles
/References

Chen, Kaichuan, Minjie Sheng, Jie Zhang, Guoquan Yan, and Bing Li. 2021. “Plasma Exosomal Proteomic Studies of Corneal Epithelial Injury in Diabetic and Non-Diabetic Group.” Experimental Eye Research 212 (November): 108794. https://doi.org/10.1016/j.exer.2021.108794.

Objective Diabetic Keratopathy (DK) is one of the significant complications of type II diabetes (T2DM) with pathogenesis not yet clarified. Since hyperglycemia is able to change the protein components contained in plasma exosomes, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered as feasible to analyze the expression of plasma exosomal proteins in patients with T2DM and non-diabetic patients respectively, find critical biological markers, and explore the mechanism of DK as well as potential therapeutic targets. Method Blood and clinical information of corneal epithelial injury in a diabetic group (the study group) and a non-diabetic group (the control group), who were patients admitted to the Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine from July 2020 to November 2020, were collected. The qEV size exclusion method was adopted to separate exosomes from plasma. The exosomes were then identified through transmission electron microscopy (TEM), nanoparticle tracking analyzer (NTA), and Western blot. The plasma exosomes of the study group and the control group were quantitatively analyzed by proteomics. A bioinformatics method is utilized to screen differential proteins and the expression of the differential proteins was verified by Western blot. Result TEM indicated that the exosomes had a double-concave disc-like appearance, with a size of about 100 nm, and Western blot expressed as CD63 and TSG101. The plasma exosomes of the study group and the control group were analyzed by quantitative proteomics with a total number of 952 proteins detected of which 245 proteins existed in the ExoCarta exosomal protein database. Through adoption of P-value to screen credible differential proteins, the heat map displayed 28 differential proteins, 7 upregulated proteins, and 21 downregulated proteins; the volcano map displayed 7 upregulated proteins and 22 downregulated proteins; the PPI interaction map displayed 12 upregulated proteins and 18 downregulated proteins. Through GO enrichment analysis, it was identified that the differential protein participated in the main biological processes and was involved in regulating the cell's stimulation response to insulin, the insulin receptor signaling pathway, and the activity of glycosylphosphatidylinositol phospholipase D as well as anti-oxidation. The enriched cell components include main components such as exosomes, blood particles, and cytoplasm. KEGG enrichment analysis indicated that the target protein FLOT2 was mainly concentrated in insulin-related signaling pathways. Western blot indicated that the expression of FLOT2 in the study group was lower compared with the control group while the expression of Exo70 was higher. Conclusion Proteomic analysis of the study group and the control group displayed a variety of proteins in plasma exosomes. The downregulated protein FLOT2 in the study group was closely related to the occurrence, development, and complication of DK in T2DM patients. The expression status of plasma FLOT2 protein in T2DM patients is expected to be a biomarker for diagnosing and monitoring of DK.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.