Mechanical Stimuli such as Shear Stress and Piezo1 Stimulation Generate Red Blood Cell Extracellular Vesicles

Extracellular Vesicles
/References

Abstract Circulating red blood cell extracellular vesicles (RBC-EVs) are a promising biomarker for vascular health. However, generating, isolating, and characterizing physiologically relevant RBC-EVs with sufficient yield and purity for biological studies is non-trivial. Here, we present and rigorously characterize an in vitro model to mimic RBC-EV production during shear stress via mechanosensitive piezo1 ion channel stimulation. We optimize our RBC-EV isolation protocol to minimize hemolysis, maximize RBC-EV yield and purity, and improve the ease of EV characterization. RBC-EV purity was measured by quantifying protein (e.g., particles/ μ g), large particle (e.g., protein aggregates), and platelet EV contamination. This study compared RBC-EV isolation performance using membrane-based affinity (e.g., exoEasy), ultrafiltration (e.g., Amicon Ultra-15), and ultracentrifugation, with and without size exclusion chromatography purification. We found that treating 6% hematocrit with 10 μ M piezo1-agonist yoda1 for 30 minutes and isolating RBC-EVs using ultracentrifugation minimized RBC hemolysis and maximized RBC-EV yield (~10 12 particles/mL) and purity, provided the most consistent RBC-EV preparations, and improved ease of RBC-EV characterization. Our pressure myography experiments suggest that co-isolated protein contaminants, but not piezo1 RBC-EVs, induce rapid mouse carotid artery vasodilation. These results underscore the importance of characterizing EV purity for biological experiments. The standardized methods outlined here enable mechanistic studies of how RBC-EVs generated in physiological flow affect vascular response.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.