Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility

Extracellular Vesicles
/References

Extracellular vesicles, especially the larger fraction (LEVs - large extracellular vesicles), are believed to be an important means of intercellular communication. Earlier studies on LEVs have shown their healing properties, especially in the vascular cells of diabetic patients. Uptake of LEVs by endothelial cells and internalization of their cargo have also been demonstrated. Endothelial cells change their properties under hyperglycemic conditions (HGC), which reduces their activity and is the cause of endothelial dysfunction. The aim of our study was to investigate how human umbilical vein endothelial cells (HUVECs) change their biological properties: shape, mobility, cell surface stiffness, as well as describe the activation of metabolic pathways after exposure to the harmful effects of HGC and the administration of LEVs released by endothelial cells. We obtained LEVs from HUVEC cultures in HGC and normoglycemia (NGC) using the filtration and ultracentrifugation methods. We assessed the size of LEVs and the presence of biomarkers such as phosphatidylserine, CD63, beta-actin and HSP70. We analyzed the LEVs uptake efficiency by HUVECs, HUVEC shape, actin cytoskeleton remodeling, surface stiffness and finally gene expression by mRNA analysis. Under HGC conditions, HUVECs were larger and had a stiffened surface and a strengthened actin cortex compared to cells under NGC condition. HGC also altered the activation of metabolic pathways, especially those related to intracellular transport, metabolism, and organization of cellular components. The most interesting observation in our study is that LEVs did not restore cell motility disturbed by HGC. Although, LEVs were not able to reverse this deleterious effect of HGC, they activated transcription of genes involved in protein synthesis and vesicle trafficking in HUVECs.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.