Isolation of intact extracellular vesicles from cryopreserved samples

Extracellular Vesicles
/References

Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.