ISOLATION METHODS OF LARGE AND SMALL EXTRACELLULAR VESICLES DERIVED FROM CARDIOVASCULAR PROGENITORS: A COMPARATIVE STUDY

Extracellular Vesicles
Viruses
/References

Saludas, Laura, Elisa Garbayo, Adrián Ruiz-Villalba, Silvia Hernández, Pieter Vader, Felipe Prósper, and María J. Blanco-Prieto. 2022. “Isolation Methods of Large and Small Extracellular Vesicles Derived from Cardiovascular Progenitors: A Comparative Study.” European Journal of Pharmaceutics and Biopharmaceutics 170 (January): 187–96. https://doi.org/10.1016/j.ejpb.2021.12.012. ‌

Since the discovery of the beneficial therapeutical effects of extracellular vesicles (EVs), these agents have been attracting great interest as next-generation therapies. EVs are nanosized membrane bodies secreted by all types of cells that mediate cell–cell communication. Although the classification of different subpopulations of EVs can be complex, they are broadly divided into microvesicles and exosomes based on their biogenesis and in large and small EVs based on their size. As this is an emerging field, current investigations are focused on basic aspects such as the more convenient method for EV isolation. In the present paper, we used cardiac progenitor cells (CPCs) to study and compare different cell culture conditions for EV isolation as well as two of the most commonly employed purification methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC). Large and small EVs were separately analysed. We found that serum starvation of cells during the EV collecting period led to a dramatic decrease in EV secretion and major cell death. Regarding the isolation method, our findings suggest that UC and SEC gave similar EV recovery rates. Separation of large and small EV-enriched subpopulations was efficiently achieved with both purification protocols although certain difference in sample heterogeneity was observed. Noteworthy, while calnexin was abundant in large EVs, ALIX and CD63 were mainly found in small EVs. Finally, when the functionality of EVs was assessed on primary culture of adult murine cardiac fibroblasts, we found that EVs were taken up by these cells, which resulted in a pronounced reduction in the proliferative and migratory capacity of the cells. Specifically, a tendency towards a larger effect of SEC-related EVs was observed. No differences could be found between large and small EVs. Altogether, these results contribute to establish the basis for the use of EVs as therapeutic platforms, in particular in regenerative fields.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.