Immuno-digital invasive cleavage assay for analyzing Alzheimer’s amyloid ß-bound extracellular vesicles

Extracellular Vesicles
/References

Background The protracted preclinical stage of Alzheimer’s disease (AD) provides the opportunity for early intervention to prevent the disease; however, the lack of minimally invasive and easily detectable biomarkers and their measurement technologies remain unresolved. Extracellular vesicles (EVs) are nanosized membrane vesicles released from a variety of cells and play important roles in cell–cell communication. Neuron-derived and ganglioside-enriched EVs capture amyloid-ß protein, a major AD agent, and transport it into glial cells for degradation; this suggests that EVs influence Aß accumulation in the brain. EV heterogeneity, however, requires the use of a highly sensitive technique for measuring specific EVs in biofluid. In this study, immuno-digital invasive cleavage assay (idICA) was developed for quantitating target-intact EVs. Methods EVs were captured onto ganglioside GM1-specific cholera toxin B subunit (CTB)-conjugated magnetic beads and detected with a DNA oligonucleotide-labeled Aß antibody. Fluorescence signals for individual EVs were then counted using an invasive cleavage assay (ICA). This idICA examines the Aß-bound and GM1-containing EVs isolated from the culture supernatant of human APP-overexpressing N2a (APP-N2a) cells and APP transgenic mice sera. Results The idICA quantitatively detected Aß-bound and GM1-containing EVs isolated from culture supernatants of APP-N2a cells and sera of AD model mice. The idICA levels of Aß-associated EVs in blood gradually increased from 3- to 12-month-old mice, corresponding to the progression of Aß accumulations in the brain of AD model mice. Conclusions The present findings suggest that peripheral EVs harboring Aß and GM1 reflect Aß burden in mice. The idICA is a valuable tool for easy quantitative detection of EVs as an accessible biomarker for preclinical AD diagnosis.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.