Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway

Extracellular Vesicles
/References

BACKGROUND AIMS: Acute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors' study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms. METHODS: A total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein. RESULTS: The administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1. CONCLUSIONS: These findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.