Human Bone Marrow Mesenchymal Stem Cell–Derived Exosomes Attenuate Blood–Spinal Cord Barrier Disruption via the TIMP2/MMP Pathway After Acute Spinal Cord Injury
After spinal cord injury (SCI), destruction of the blood–spinal cord barrier (BSCB) results in infiltration of blood cells, such as neutrophils and macrophages, leading to permanent neurological dysfunction. Previous studies have shown that human bone marrow mesenchymal stem cell (BMSC)–derived exosomes have a beneficial neuroprotective effect in SCI models. However, whether BMSC-Exos contribute to the integrity of the BSCB has not been clarified. The purpose of this study was to investigate the mechanism of BMSC-Exo-induced changes in the permeability of the BSCB after SCI. Here, we first used BMSC-Exos to treat an SCI rat model, showing that BMSC-Exos can inhibit BSCB permeability damage and improve spontaneous repair. Next, we found that tissue inhibitors of matrix metalloproteinase 2 (TIMP2) have been shown to play an important role in the function of BMSC-Exos by inhibiting the matrix metalloproteinase (MMP) pathway, thereby reducing the reduction of cell junction proteins. Therefore, we constructed siTIMP2 to knock out TIMP2 in BMSC-Exos, which caused the activity of BMSC-Exos to be significantly weakened. Finally, we constructed an in vitro model of BSCB with HBMECs and verified that TIMP2 in BMSC-Exos in vitro can also alleviate BSCB damage. This proof-of-principle study demonstrates that BMSC-Exos can preserve the integrity of the BSCB and improve functional recovery after SCI through the TIMP2/MMP signaling pathway.