GFP‐tagging of extracellular vesicles for rapid process development

Extracellular Vesicles
/References

Extracellular vesicles (EVs) act as nano-scale molecular messengers owing to their capacity to shuttle functional macromolecular cargo between cells. This intrinsic ability to deliver bioactive cargo has sparked great interest in the use of EVs as novel therapeutic delivery vehicles; investments totaling over $2 billion in 2020 alone were reported for therapeutic EVs. One of the bottlenecks facing the production of EVs is the lack of rapid and high throughput analytics to aid process development. Here CHO cells have been designed and engineered to express GFP-tagged EVs via fusion to CD81. Moreover, this study highlights the importance of parent cell characterization to ensure lack of non-fused GFP for the effective use of this quantitative approach. The fluorescent nature of resulting vesicles allowed for rapid quantification of concentration and yield across the EV purification process. In this manner, the degree of product loss was deduced by mass balance analysis of ultrafiltration processing, reconciled up to 97% of initial feed mass. The use of GFP-tagging allowed for straightforward monitoring of vesicle elution from chromatography separations and detection via western blotting. Collectively, this work illustrates the utility of GFP-tagged EVs as a quantitative and accessible tool for accelerated process development.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.