Extracellular Vesicle-Derived Protein File from Peripheral Blood Predicts Immune-Related Adverse Events in Gastric Cancer Patients Receiving Immunotherapy

Extracellular Vesicles
/References

Immune checkpoint inhibitors (ICIs) initiate a new stage for gastric cancer (GC) therapeutics, and plenty of patients have already benefited from ICIs. Liquid biopsy promotes the development of precision medicine of GC. However, due to the lack of precision biomarkers of immune-related adverse events (irAEs), the safety of ICIs-treated GC patients cannot be guaranteed. In our study, GC patients treated with ICIs were included for investigating the correlation between irAEs of ICIs and corresponding outcomes. We also explored the potential of biomarkers of irAEs via EV-derived proteins. Dynamic plasma was taken from 102 ICIs-treated GC patients generated retrospectively or prospectively, who were divided into discovery and validating cohorts. Plasma EV-derived protein profiles were described, and two EV-proteins, inducible T-cell co-stimulator (EV-ICOS) and indoleamine 2,3-dioxygenase 1(EV-IDO1), from 42 vital proteins were screened to predict the prognosis of ICIs with irAEs. Our work is the first to propose that EV-proteins can predict ICIs-corresponding irAEs, which can be conducive to the diagnosis and treatment of GC patients, and to facilitate the screening of beneficiaries.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.