Exploiting extracellular vesicles for ultrasensitive detection of cancer biomarkers from liquid biopsies

Extracellular Vesicles
/References

Notarangelo, Michela, Chiara Zucal, Angelika Modelska, Isabella Pesce, Giorgina Scarduelli, Cristina Potrich, Lorenzo Lunelli, et al. 2019. “Ultrasensitive Detection of Cancer Biomarkers by Nickel-Based Isolation of Polydisperse Extracellular Vesicles from Blood.” EBioMedicine 43 (May): 114–26. https://doi.org/10.1016/j.ebiom.2019.04.039.

Extracellular vesicles (EVs) are small membrane-surrounded structures containing transmembrane proteins and enclosing cytosolic proteins and nucleic acids. They are released in the extracellular space by both normal and neoplastic cells and play an important role in cell-cell communication in numerous physiological processes and pathological conditions, through the transfer of their functional cargo to recipient cells. EVs are highly abundant in biological fluids, and even more represented in cancer patients’ biofluids, therefore many studies suggested that they can be instrumental in liquid biopsies as prognostic markers or for early detection of tumors. Moreover, being secreted by potentially all the cells, they can serve in oncology to represent the tumor heterogeneity, which is underestimated by the current diagnostic tools. Given their small size, EVs are difficult to isolate in a high-throughput way and, therefore, one of the main obstacles to their clinical application, is that the existing isolation methods are impractical. During these years, I worked at the development and optimization of a novel technique that allows purification of heterogeneous EVs from biological fluids in an efficient, fast and reproducible way. This technique, named Nickel-Based Isolation (NBI), is a biochemical assay that allows obtaining polydisperse EVs in a physiological pH solution, therefore, preserving their morphology, heterogeneity, and stability. We tested and optimized this assay in protein-enriched systems and comparing it to the techniques currently used to characterize and measure EVs, such as flow cytometry and Tunable Resistive Pulse Sensing. We challenged the reproducibility of this method by isolating EVs from different biological fluids. Interestingly, the EVs purified with NBI result more intact and stable compared to the ones obtained with other methods, and can be studied in a clinical setting and used as an innovative tool for detection of molecules associated with diseases. We demonstrated the specificity of the procedure by using individual isolated vesicles in biochemical and molecular assay, optimized to characterize the biological content of EVs. We were able to detect picomolar concentration of PSMA on 105 EVs isolated from plasma of prostate cancer patients and BRAF-V600E transcript in just 103 EVs from the plasma of colon cancer patients, reaching unprecedented matching with tissue biopsy results. We also investigated the transcriptome of EVs isolated from glioblastoma cancer stem cells, in order to exploit the potential of EVs as diagnostic markers.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023
No items found.
No items found.
No items found.