Erythrocyte-derived extracellular vesicles aggravate inflammation by promoting the proinflammatory macrophage phenotype through TLR4–MyD88–NF-κB–MAPK pathway

Extracellular Vesicles
/References

Gao, Yuhan, Haiqiang Jin, Hui Tan, Xiaodong Cai, and Yongan Sun. 2022. “Erythrocyte‐Derived Extracellular Vesicles Aggravate Inflammation by Promoting the Proinflammatory Macrophage Phenotype through TLR4–MyD88–NF‐ΚB–MAPK Pathway.” Journal of Leukocyte Biology, April. https://doi.org/10.1002/jlb.3a0821-451rr.

Transfusion of stored erythrocytes is associated with the increased risk of morbidity and mortality in critical infections, but the mechanism is incompletely understood. Previous studies have suggested that RBC-derived extracellular vesicles (EVs) may be potential risk factors for the occurrence of transfusion-related immunomodulation. The purpose of our study was to evaluate the effects of RBC-derived EVs under inflammatory conditions and explore the underlying mechanisms. In vivo, the activity of EVs was evaluated in cecal ligation and puncture (CLP)-induced sepsis. Our results showed that EVs significantly aggravated the inflammatory response to sepsis in serum and lung tissue by promoting the production of the proinflammatory factors tumor necrosis factor-α (TNF-α)-interleukin-6(IL-6), and interleukin-1β (IL-1β) and reduced the survival rate of septic mice in vivo. Importantly, adoptive transfer of EVs-pretreated bone marrow-derived macrophages (BMDMs) obviously aggravated systemic proinflammatory factors in mice after CLP surgery. In vitro, the proinflammatory properties of EVs were shown to elevate TNF-α, IL-6, and IL-1β levels in lipopolysaccharide (LPS)-stimulated BMDMs. Moreover, EVs promoted LPS-induced macrophage polarization into a proinflammatory phenotype. The underlying mechanism might involve EV-mediated up-regulation of TLR4–MyD88–NF-κB–MAPK activity to favor macrophage cytokine production.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.