Efficient anti-tumor immunotherapy using tumor epitope-coated biodegradable nanoparticles combined with polyinosinic-polycytidylic acid and an anti-PD1 monoclonal antibody

Extracellular Vesicles
/References

Background Vaccination with tumor peptide epitopes associated with major histocompatibility complex class I molecules is an attractive approach directed at inducing tumor-specific cytotoxic T lymphocytes (CTLs). However, challenges remain in improving the therapeutic efficacy of peptide epitope vaccines, including the low immunogenicity of peptide epitopes and insufficient stimulation of innate immune components in vivo. To overcome this, we aimed to develop and test an innovative strategy that elicits potent CTL responses against tumor epitopes. The essential feature of this strategy is vaccination using tumor epitope-loaded nanoparticles (NPs) in combination with polyinosinic-polycytidylic acid (poly-IC) and anti-PD1 monoclonal antibody (mAb). Methods Carboxylated NPs were prepared using poly(lactic-co-glycolic acid) and poly(ethylene/maleic anhydride), covalently conjugated with anti-H-2KbmAbs, and then attached to H-2Kb molecules isolated from the tumor mass (H-2b). Native peptides associated with the H-2Kbmolecules of H-2Kb-attached NPs were exchanged with tumor peptide epitopes. The tumor-specific CTL-inducing and anti-tumor activities of the tumor epitope-loaded NPs were examined in mice bearing EG7-OVA thymoma or B16-F10 melanoma. In addition, the anti-tumor therapeutic efficacy of the NPs was examined in combination with poly-IC, anti-PD1 mAb, or both. Results Tumor peptide epitope-loaded NPs efficiently induced tumor-specific CTLs when used to immunize tumor-bearing mice as well as normal mice. This activity of the NPs significantly was increased when co-administered with poly-IC. Accordingly, the NPs exerted significant anti-tumor effects in mice implanted with EG7-OVA thymoma or B16-F10 melanoma, and the anti-tumor activity of the NPs was significantly increased when applied in combination with poly-IC. The most potent anti-tumor activity was observed when the NPs were co-administered with both poly-IC and anti-PD1 mAb. Conclusions Immunization with tumor epitope-loaded NPs in combination with poly-IC and anti-PD1 mAb in tumor-bearing mice can be a powerful means to induce tumor-specific CTLs with therapeutic anti-tumor activity.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.