Development and Preclinical Evaluation of Virus Like Particle Vaccine Against COVID-19 Infection

Nanomedicine
Viruses
/References

Ipekoglu, Emre, Muzaffer Yildirim, Irem Evcili, Naz Yilmaz, Artun Bulbul, Nilsu Turay, Yagmur Aydin et al. "Development and Preclinical Evaluation of Virus Like Particle Vaccine Against COVID-19 Infection." Authorea Preprints (2021).

Background Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the 4 structural proteins of SARS-CoV-2. Methods VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography and characterized by tunable resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. Results Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1 biased T cell responses, reduced virus load and prevented lung pathology upon live virus challenge in vaccinated animals. Conclusion These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.

View full article

Recent Publications

In the biomedical field, there has been a requirement for developing theranostic nanomaterials with higher biosafety, leading to both diagnosis and therapy. Methylene blue (MB+) is an organic dye with both photoluminescence (PL) and photosensitization abilities to generate singlet oxygen (1O2). However, MB+ easily loses its generation ability by hydrogen reduction in vivo or by forming aggregates. In this study, MB+ immobilized on biocompatible hydroxyapatite (HA) nanoparticles was applied for the bifunctions of efficient PL and photosensitization. The MB+-immobilized HA nanoparticles (MH) formed aggregates with sizes of 80–100 nm in phosphate buffer (PB). The generation amount and efficiency of 1O2 from the nanoparticles in PB seem to depend on the immobilized MB+ amount and the percentage of the monomer, respectively. Considering the larger immobilized amount and percentage of the MB+ monomer, it was found that there was MH with the lower generation amount and efficiency of 1O2 to exhibit the highest PL intensity. The photofunctional measurement of MB+ revealed the state of MB+ molecules on the HA surface, and it was suggested that the MB+ molecules immobilized on the MH surface would form more hydrogen bonds to change their excitation states. In the cellular experiments, the Hela cancer cells reacted with the nanoparticles and showed red-color PL, indicating cellular imaging. Furthermore, the adherent cell coverage decreased by 1O2 generation, indicating the importance of the immobilization amount of the MB+ monomer. Therefore, theranostic nanomaterials with biosafety were successfully synthesized to show two photofunctions, which provide both cellular imaging and photodynamic therapy by the nanohybrid system between HA and MB+.

2023