Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses

Extracellular Vesicles
Viruses
/References

Badierah, Raied A., Vladimir N. Uversky, and Elrashdy M. Redwan. "Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses." Journal of Biomolecular Structure and Dynamics 39, no. 8 (2021): 3034-3060.

Extracellular vesicles (EVs) are membrane-encapsulated particles released by eukaryotic and prokaryotic cells into the extracellular environment. Depending on their origin, size, and composition, EVs are grouped in several classes, with one of them being exosomes, which are small EVs (SEVs) generated within the endosomal compartment of eukaryotic cells via the unique multivesicular body pathway. Being able to deliver their content (proteins, lipids, small molecules, and nucleic acids) to other cells, exosomes/SEVs are considered as bioactive vesicles with multiple biological functions. Importantly, the composition of exosomes/SEVs depends on the cell and tissue of origin including a set of specific proteins. However, the pathological conditions may lead to the appearance of diseases-specific exosomes/SEVs containing pathology-specific cargoes utilized in the malicious cell-cell communication and spread of malady. Viruses demonstrate complex ‘dancing’ around the exosome biogenesis system, being able to hijack the host systems responsible for the exosome biogenesis. They use the exosome biogenesis system to promote packaging of their capsids, regulate virion production, and virus secretion. They also utilize a Trojan horse stratagem to place virions inside the SEVs and thereby to spread beyond their normal range of cell hosts using the normal EV uptake process. Another illustration of the virus-based utilization of Trojan horse strategy is given by the ability of human viruses to use exosomes/SEVs as carriers of their exogenous miRNA or viral proteins to the non-infected cells. Taken together, these strategies of dancing with Trojan horses can help viruses to fight with the host defense and to spread the infection.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.