Computational analysis of serum-derived extracellular vesicle miRNAs in juvenile sheep model of single stage Fontan procedure

Extracellular Vesicles
/References

Patients with single ventricle heart defects requires a series of staged open-heart procedures, termed Fontan palliation. However, while lifesaving, these operations are associated with significant morbidity and early mortality. The attendant complications are thought to arise in response to the abnormal hemodynamics induced by Fontan palliation, although the pathophysiology underlying these physicochemical changes in cardiovascular and other organs remain unknown. Here, we investigated the microRNA (miRNA) content in serum and serum-derived extracellular vesicles (EVs) by sequencing small RNAs from a physiologically relevant sheep model of the Fontan operation. The differential expression analysis identified the enriched miRNA clusters in (1) serum vs. serum-derived EVs and (2) pre-Fontan EVs vs. post-Fontan EVs. Metascape analysis showed that the overexpressed subset of EV miRNAs by Fontan procedure target liver-specific cells, underscoring a potentially important pathway involved in the liver dysfunction that occurs as a consequence of Fontan palliation. We also found that post-Fontan EV miRNAs were associated with senescence and cell death, whereas pre-Fontan EV miRNAs were associated with stem cell maintenance and epithelial-to-mesenchymal transition. This study shows great potential to identify novel circulating EV biomarkers from Fontan sheep serum that may be used for the diagnosis, prognosis, and therapeutics for patients that have undergone Fontan palliation.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.