Comparison of extracellular vesicle isolation and storage methods using high-sensitivity flow cytometry

Extracellular Vesicles
/References

Deville, Sarah, Pascale Berckmans, Rebekka Van Hoof, Ivo Lambrichts, Anna Salvati, and Inge Nelissen. "Comparison of extracellular vesicle isolation and storage methods using high-sensitivity flow cytometry." PloS one 16, no. 2 (2021): e0245835.

Extracellular vesicles (EVs) are of interest for a wide variety of biomedical applications. A major limitation for the clinical use of EVs is the lack of standardized methods for the fast and reproducible separation and subsequent detection of EV subpopulations from biofluids, as well as their storage. To advance this application area, fluorescence-based characterization technologies with single-EV resolution, such as high-sensitivity flow cytometry (HS-FCM), are powerful to allow assessment of EV fractionation methods and storage conditions. Furthermore, the use of HS-FCM and fluorescent labeling of EV subsets is expanding due to the potential of high-throughput, multiplex analysis, but requires further method development to enhance the reproducibility of measurements. In this study, we have applied HS-FCM measurements next to standard EV characterization techniques, including nanoparticle tracking analysis, to compare the yield and purity of EV fractions obtained from lipopolysaccharide-stimulated monocytic THP-1 cells by two EV isolation methods, differential centrifugation followed by ultracentrifugation and the exoEasy membrane affinity spin column purification. We observed differences in EV yield and purity. In addition, we have investigated the influence of EV storage at 4°C or -80°C for up to one month on the EV concentration and the stability of EV-associated fluorescent labels. The concentration of the in vitro cell derived EV fractions was shown to remain stable under the tested storage conditions, however, the fluorescence intensity of labeled EV stored at 4°C started to decline within one day.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.