Comparative study of commercial protocols for high recovery of high-purity mesenchymal stem cell-derived extracellular vesicle isolation and their efficient labeling with fluorescent dyes

Extracellular Vesicles
Nanomedicine
/References

Kamei, Noriyasu, Haruka Nishimura, Atsushi Matsumoto, Riho Asano, Kanae Muranaka, Mahiro Fujita, Miina Takeda, Hiro Hashimoto, and Mariko Takeda-Morishita. "Comparative study of commercial protocols for high recovery of high-purity mesenchymal stem cell-derived extracellular vesicle isolation and their efficient labeling with fluorescent dyes." Nanomedicine: Nanotechnology, Biology and Medicine 35 (2021): 102396.

The extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can be used as carriers for therapeutic molecules and drugs to target disordered tissues. This aimed to compare the protocols used for isolation of MSC-derived EVs by comparing EV collection conditions and three commercial purification kits. We also determined appropriate fluorescent dyes for labeling EVs. MSC-derived EVs were efficiently secreted during cell growth and highly purified by the phosphatidyl serine-based affinity kit. Although the EV membrane was more efficiently labeled with the fluorescent dye PKH67 compared to other probes, the efficiency was not enough to accurately analyze the endothelial cellular uptake of EVs. Results verified the easy protocol for isolating and fluorescently labeling EVs with commercial reagents and kits, but meanwhile, further modification of the protocol is required in order to scale up the amount of EVs derived from MSCs using fluorescent probes. Graphical Abstract The extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can be used as carriers for therapeutic molecules and drugs. This aimed to compare the protocols used for isolation of EVs by comparing EV collection conditions and three commercial purification kits. MSC-derived EVs were efficiently secreted during cell growth and highly purified by the phosphatidyl serine-based affinity kit. Results verified the easy protocol for isolating and fluorescently labeling EVs with commercial reagents and kits, but meanwhile, further modification of the protocol is required in order to scale up the amount of EVs derived from MSCs using fluorescent probes.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.