Circulating extracellular vesicles provide valuable protein, but not DNA, biomarkers in metastatic breast cancer

Extracellular Vesicles
/References

Detection of cell‐free circulating tumour DNA (ctDNA) and cancer‐specific extracellular vesicles (EVs) in patient blood have been widely explored as non‐invasive biomarkers for cancer detection and disease follow up. However, most of the protocols used to isolate EVs co‐isolate other components and the actual value of EV‐associated markers remain unclear. To determine the optimal source of clinically‐relevant circulating biomarkers in breast cancer, we applied a size exclusion chromatography (SEC) procedure to analyse separately the content in nucleic acids of EV‐enriched and EV‐depleted fractions, in comparison to total plasma. Both cellular and mitochondrial DNA (cellDNA and mtDNA) were detected in EV‐rich and EV‐poor fractions. Analysing specific mutations identified from tumour tissues, we detected tumour‐specific cellular alleles in all SEC fractions. However, quantification of ctDNA from total plasma was more sensitive than from any SEC fractions. On the other hand, mtDNA was preferentially enriched in EV fractions from healthy donor, whereas cancer patients displayed more abundant mtDNA in total plasma, and equally distributed in all fractions. In contrast to nucleic acids, using a Multiplexed bead‐based EV‐analysis assay, we identified three surface proteins enriched in EVs from metastatic breast cancer plasma, suggesting that a small set of EV surface molecules could provide a disease signature. Our findings provide evidence that the detection of DNA within total circulating EVs does not add value as compared to the whole plasma, at least in the metastatic breast cancer patients used here. However, analysis of a subtype of EV‐associated proteins may reliably identify cancer patients. These non‐invasive biomarkers represent a promising tool for cancer diagnosis and real‐time monitoring of treatment efficacy and these results will impact the development of therapeutic approaches using EVs as targets or biomarkers of cancer.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.