Cholangiocyte-Derived Exosomal Long Noncoding RNA PICALM-AU1 Promotes Pulmonary Endothelial Cell EndMT in Hepatopulmonary Syndrome

Extracellular Vesicles
Viruses
/References

Yang, C., Yang, Y., Chen, Y., Huang, J., Li, C., Li, D., Tang, X., Ning, J., Gu, J., Yi, B. and lu, k., 2021. Cholangiocyte-Derived Exosomal Long Noncoding RNA PICALM-AU1 Promotes Pulmonary Endothelial Cell EndMT in Hepatopulmonary Syndrome.

Background: Hepatopulmonary syndrome (HPS) is an important clinical problem with limited understanding of disease pathologies. Exosome mediated cell-cell communication can modulate various cellular functions by transferring a variety of intracellular components to target cells. A new lncRNA PICALM-AU1 was found and upregulated in the liver of subjects with HPS. However, the expression and biological functions of the lncRNA PICALM-AU1 are still unknown. Methods: HPS rat model was constructed by common bile duct ligation (CBDL). RNA macroarray was used to analyze the expression differential lncRNAs in HPS rat liver. PICALM-AU1 expression in the serum exosome was measured in 56 HPS patients and in 73 patients with liver cirrhosis but not HPS. qPCR, Fluorescence in situ hybridization were used to analyze PICALM-AU1 expression and location. Virus derived PICALM-AU1 upregulation and down regulation were applied in rats and PMVECs cells. The effects of PICALM-AU1 on PMVECs was determined via CCK8 assay and transwell assay. PICALM-AU1 and miR144-3p relationship was analysis by Dual-luciferase reporter assay. Results: In this study, we found lncRNA PICALM-AU1 expressed in the cholangiocyte of liver, secreted as exosome into the serum. PICALM-AU1 carrying serum exosomes induced endothelial-mesenchymal transition (EndMT) of PMVECs and promoted lung injury. Furthermore, overexpression of PICALM-AU1 significantly suppressed miR144-3p and subsequently induced ZEB1 expression. Conclusions: Taken together, our findings present a road map of targeting the newly identified cholangiocyte-derived exosomal lncRNA PICALM-AU1 plays a critical role in the pathologic angiogenesis of HPS by promoting EndMT and represents a potential therapeutic target for HPS.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023

Extracellular vesicles (EVs) are nowadays a target of interest in cancer therapy as a successful drug delivering tool. Based on their many beneficial biocompatible properties are designed to transport nucleic acids, proteins, various nanomaterials or chemotherapeutics. Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) possess their tumor-homing abilities. This inspired us to engineer the MSC's EVs to be packed with chemotherapeutic agents and deliver it as a Trojan horse directly into tumor cells. In our study, human dental pulp MSCs (DP-MSCs) were cultivated with gemcitabine (GCB), which led to its absorption by the cells and subsequent secretion of the drug out into conditioned media in EVs. Concentrated conditioned media containing small EVs (potentially exosomes) significantly inhibited the cell growth of pancreatic carcinoma cell lines in vitro. DP-MSCs were simultaneously engineered to express a suicide gene fused yeast cytosinedeaminase:uracilphosphoribosyltransferase (yCD::UPRT). The product of the suicide gene converts non-toxic prodrug 5-fluorocytosine (5-FC) to highly cytotoxic chemotherapeutic drug 5-fluorouracil (5-FU) in the recipient cancer cells. Conversion of 5-FC to 5-FU had an additional effect on cancer cell's growth inhibition. Our results showed a therapeutic potential for DP-MSC-EVs to be designed for successful delivering of chemotherapeutic drugs, together with prodrug suicide gene therapy system.

2023