Cholangiocyte-Derived Exosomal Long Noncoding RNA PICALM-AU1 Promotes Pulmonary Endothelial Cell EndMT in Hepatopulmonary Syndrome
Yang, C., Yang, Y., Chen, Y., Huang, J., Li, C., Li, D., Tang, X., Ning, J., Gu, J., Yi, B. and lu, k., 2021. Cholangiocyte-Derived Exosomal Long Noncoding RNA PICALM-AU1 Promotes Pulmonary Endothelial Cell EndMT in Hepatopulmonary Syndrome.
Background: Hepatopulmonary syndrome (HPS) is an important clinical problem with limited understanding of disease pathologies. Exosome mediated cell-cell communication can modulate various cellular functions by transferring a variety of intracellular components to target cells. A new lncRNA PICALM-AU1 was found and upregulated in the liver of subjects with HPS. However, the expression and biological functions of the lncRNA PICALM-AU1 are still unknown. Methods: HPS rat model was constructed by common bile duct ligation (CBDL). RNA macroarray was used to analyze the expression differential lncRNAs in HPS rat liver. PICALM-AU1 expression in the serum exosome was measured in 56 HPS patients and in 73 patients with liver cirrhosis but not HPS. qPCR, Fluorescence in situ hybridization were used to analyze PICALM-AU1 expression and location. Virus derived PICALM-AU1 upregulation and down regulation were applied in rats and PMVECs cells. The effects of PICALM-AU1 on PMVECs was determined via CCK8 assay and transwell assay. PICALM-AU1 and miR144-3p relationship was analysis by Dual-luciferase reporter assay. Results: In this study, we found lncRNA PICALM-AU1 expressed in the cholangiocyte of liver, secreted as exosome into the serum. PICALM-AU1 carrying serum exosomes induced endothelial-mesenchymal transition (EndMT) of PMVECs and promoted lung injury. Furthermore, overexpression of PICALM-AU1 significantly suppressed miR144-3p and subsequently induced ZEB1 expression. Conclusions: Taken together, our findings present a road map of targeting the newly identified cholangiocyte-derived exosomal lncRNA PICALM-AU1 plays a critical role in the pathologic angiogenesis of HPS by promoting EndMT and represents a potential therapeutic target for HPS.