Characterization of positively charged polyplexes by tunable resistive pulse sensing
Keil, Tobias WM, and Olivia M. Merkel. "Characterization of positively charged polyplexes by tunable resistive pulse sensing." European Journal of Pharmaceutics and Biopharmaceutics 158 (2021): 359-364.
With the approval of the first siRNA-based drugs, non-viral siRNA delivery has gained special interest in industry and academia in the last two years. For non-viral delivery, positively charged lipid and polymer formulations play a central role in research and development. However, nanoparticle size characterization, particularly of polydisperse formulations, can be very challenging. Tunable resistive pulse sensing for particle by particle measurements of size, polydispersity, zeta potential and a direct concentration promises better assessment of nanoparticle formulations. However, the current application is not optimized for positively charged particles. A supplier-provided coating solution for difficult-to-measure samples does not allow for successful measurements of positively charged nanoparticles. This article describes a new coating solution based on choline-chloride. Coating is verified by current–voltage (I-V) recordings and ultimately tested on a positively charged nanoparticle formulation comprising of siRNA and PEG-PCL-PEI polymer. This coating allows successful size, polydispersity index (PDI) and concentration measurement by tunable resistive pulse sensing of positively charged PEI-based polyplexes. This article provides the foundation for further characterization of polyplexes as well as other positively charged nanoparticle formulations based on particle by particle measurements.