Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their prospects as novel drug delivery systems

Extracellular Vesicles
/References

Innovative developments in drug delivery technologies rely on our ability to tune the properties of supramolecular and macromolecular carriers through the chemical characteristics of individual components or building-blocks. In this regard, oxanorbornane-based synthetic lipids offer great promise as novel drug delivery systems (NDDS). As part of our efforts to develop them as vehicles for anticancer drugs, we have designed and synthesized a new derivative with a fluorescent tag (NBD) on the head group, and investigated its uptake and distribution in A549 cells. Addition of its DMSO solution to aqueous phase followed by extrusion generated solid lipid particles (SLPs), which were characterized by DLS, AFM and TEM techniques. Vesicles of this lipid in a co-assembled state with phosphatidylcholine (PC) and cholesterol were also prepared by thin-film hydration method. DLS data obtained from samples suspended in PBS showed that average size of SLPs is relatively smaller (∼56 nm) than that of vesicles (∼262 nm). The zeta potential of these particles was between −45 and −51 mV, which favor stable formulations. Confocal microscopic analysis of these aggregates after incubation with A549 cells showed that they get distributed predominantly in the cytosolic side. Concentration- and time-dependent flow cytometry analysis revealed that the uptake commences in the initial 5 min itself, and almost 90% of cells become NBD-positive in 2 h. There was an increase in uptake at higher concentration, indicative of passive diffusion. At the same time, a reduction in uptake at lower temperature (4 °C) compared to that at 37 °C pointed towards some contribution from active transport as well. Variation in uptake after pre-treatment with endocytosis inhibitors such as chlorpromazine and methyl-β-cyclodextrin suggested involvement of clathrin- and caveolae-mediated endocytic pathways. Cell viability and hemolytic assays further indicated that these nanocarriers have good safety profile.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.