Breaking the classics: Next-generation biosensors for the isolation, profiling and detection of extracellular vesicles

Extracellular Vesicles
/References

Vaz, Raquel, Verónica M. Serrano, Yuselis Castaño-Guerrero, Ana R. Cardoso, Manuela F. Frasco, and M. Goreti F. Sales. 2022. “Breaking the Classics: Next-Generation Biosensors for the Isolation, Profiling and Detection of Extracellular Vesicles.” Biosensors and Bioelectronics: X 10 (May): 100115. https://doi.org/10.1016/j.biosx.2022.100115. ‌

Extracellular vesicles (EVs) contain biomarkers that may represent a paradigm shift in timely disease diagnosis and personalized therapeutic approaches. Despite tremendous progress in this field, the considerable complexity and heterogeneity of EVs, combined with hurdles in isolation and accurate characterization, have delayed their envisioned clinical translation. At the same time, emerging biosensor technologies are trying to overcome the limitations and provide new momentum to EVs research. In this review, the focus is given on the variety of novel approaches to improve the capture of EVs of interest from a myriad of sample types in terms of yield, purity, sensitivity, and specificity. These biosensing devices also contribute to the understanding of the content of EVs in correlation with their function. Given the pivotal role of EVs uncovered to date and the recent technological advances discussed herein, nanosensing platforms offer low-cost, fast, simple, and accurate methods that are likely to help gain more insight into the biology of EVs. Moreover, the prospect of identifying new roles and patterns will reinforce the importance of EVs and intercellular communication in health status.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023
No items found.
No items found.
No items found.