A high-throughput methodology for the efficient isolation of highly pure extracellular vesicles from skeletal muscle myoblasts
Background: Skeletal muscle extracellular vesicles (SM-EVs) regulate gene expression events in myogenic differentiation. Optimising effective SM-EV isolation methods offering high levels of purity will be important to accurately define their composition and functionality. Size-exclusion chromatography (SEC) applied in combination with ultrafiltration (UF) has the potential to increase sample throughput, scalability and selectivity. However, an optimal UF+SEC methodology has not been tested for the isolation of myotube derived EVs. Our aim was to compare two different UF protocols and define an optimal window of SEC fractions to maximise SM-EVs recovery and sample purity. Methods: C2C12 myotube conditioned medium was pre-concentrated using Amicon® Ultra 15 or Vivaspin®20, 100KDa UF columns and processed by SEC (IZON, qEV 70nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. Results: EV markers Alix and TSG101 could be detected up to fraction 13, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein contaminants were detected from fraction 6 onwards for both protocols. Amicon and Vivaspin UF preconcentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. Conclusion: In conclusion, this study developed optimal UF+SEC protocols for the isolation of SM-EVs based on sample purity (fractions 1-5) and total abundance (fractions 2-10). The resulting protocols will be valuable in isolating highly pure SM-EV preparations for biomarker studies.