A complete proteomic profile of human and bovine milk exosomes by liquid chromatography mass spectrometry

Extracellular Vesicles
Nanomedicine
/References

Vaswani, K., Peiris, H., Qin Koh, Y., Hill, R., Harb, T., Arachchige, B., Logan, J., Reed, S., Davies, P. and Mitchell, M., 2021. A complete proteomic profile of human and bovine milk exosomes by liquid chromatography mass spectrometry. Expert Review of Proteomics, 18(8), pp.719-735.

Background: The present study investigates the proteomic content of milk-derived exosomes. A detailed description of the content of milk exosomes is essential to improve our understanding of the various components of milk and their role in nutrition. Methods: The exosomes used in this study were isolated as previously described and characterized by their morphology, particle concentration, and the presence of exosomal markers. Human and bovine milk exosomes were evaluated using Information-Dependent Acquisition (IDA) Mass Spectrometry. A direct comparison is made between their proteomic profiles. Results: IDA analyses revealed similarities and differences in protein content. About 229 and 239 proteins were identified in the human and bovine milk exosome proteome, respectively, of which 176 and 186 were unique to each species. Fifty-three proteins were common in both groups. These included proteins associated with specific biological processes and molecular functions. Most notably, the 4 abundant milk proteins lactadherin, butyrophilin, perilipin-2, and xanthine dehydrogenase/oxidase were present in the top 20 list for both human and bovine milk exosomes. Conclusion: The milk exosome protein profiles we have provided are crucial new information for the field of infant nutrition. They provide new insight into the components of milk from both humans and bovines.

View full article

Recent Publications

Cigarette smoke (CS) represents one of the most relevant environmental risk factors for several chronic pathologies. Tissue damage caused by CS exposure is mediated, at least in part, by oxidative stress induced by its toxic and pro-oxidant components. Evidence demonstrates that extracellular vesicles (EVs) released by various cell types exposed to CS extract (CSE) are characterized by altered biochemical cargo and gained pathological properties. In the present study, we evaluated the content of oxidized proteins and phospholipid fatty acid profiles of EVs released by human bronchial epithelial BEAS-2B cells treated with CSE. This specific molecular characterization has hitherto not been performed. After confirmation that CSE reduces viability of BEAS-2B cells and elevates intracellular ROS levels, in a dose-dependent manner, we demonstrated that 24 h exposure at 1% CSE, a concentration that only slight modifies cell viability but increases ROS levels, was able to increase carbonylated protein levels in cells and released EVs. The release of oxidatively modified proteins via EVs might represent a mechanism used by cells to remove toxic proteins in order to avoid their intracellular overloading. Moreover, 1% CSE induced only few changes in the fatty acid asset in BEAS-2B cell membrane phospholipids, whereas several rearrangements were observed in EVs released by CSE-treated cells. The impact of changes in acyl chain composition of CSE-EVs accounted for the increased saturation levels of phospholipids, a membrane parameter that might influence EV stability, uptake and, at least in part, EV-mediated biological effects. The present in vitro study adds new information concerning the biochemical composition of CSE-related EVs, useful to predict their biological effects on target cells. Furthermore, the information regarding the presence of oxidized proteins and the specific membrane features of CSE-related EVs can be useful to define the utilization of circulating EVs as marker for diagnosing of CS-induced lung damage and/or CS-related diseases.

2023