1. Strategies to reduce background noise in immunoassays in different substrates including EVs
Ströhle, G., Li, H. (2023) Comparison of blocking reagents for antibody microarray-based immunoassays on glass and paper membrane substrates. Anal Bioanal Chem https://doi.org/10.1007/s00216-023-04614-w
2. Exploring the response of Saccharomyces cerevisiae to EVs from other yeast species for technological advantages in wine fermentation
Mejias-Ortiz, M., Mencher, A., Morales, P., Tronchoni, J., Gonzalez, R. (2023) Saccharomyces cerevisiae responds similarly to co-culture or to a fraction enriched in Metschnikowia pulcherrima extracellular vesicles. Microbial Biotechnology 00:1–14 https://doi.org/10.1111/1751-7915.14240
3. Use of qEV Gen 2 to enrich microbiota-derived bacterial vesicles
Erttmann, S., Gekara, N (2023) Protocol for isolation of microbiota-derived membrane vesicles from mouse blood and colon. STAR Protocols4, 102046 https://doi.org/10.1016/j.xpro.2023.102046
4. Expression profiling of 3 tetraspanins in single EVs for diagnostic potential of rheumatoid arthritis patients and treatment responder groups
Rydland, A., Heinicke, F., Flåm, S.T. et al. Small extracellular vesicles have distinct CD81 and CD9 tetraspanin expression profiles in plasma from rheumatoid arthritis patients. Clin Exp Med (2023). https://doi.org/10.1007/s10238-023-01024-1
5. Evidence for Helicobacter pylori EVs having a detrimental effect on brain functionality and their contribution to Alzheimer's disease pathogenesis
Junhua Xie, Lien Cools, Griet Van Imschoot, Elien Van Wonterghem, Marie J. Pauwels, Ine Vlaeminck, Chloë De Witte, Samir EL Andaloussi, Keimpe Wierda, Lies De Groef (2023) Helicobacter pylori-derived outer membrane vesicles contribute to Alzheimer's disease pathogenesis viaC3-C3aR signalling. https://doi.org/10.1002/jev2.12306
6. EV isolation from peripheral blood via qEV Gen 2enables proteomic analysis for biomarker discovery
Espejo, C., Lyons, B., Woods, G.M., Wilson, R. (2023). Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood. In: Greening, D.W., Simpson, R.J. (eds) Serum/PlasmaProteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_9
7. Isolation protocol for blood EVs for LC-MS/MS-based analysis of target proteins
Newman, L.A., Useckaite, Z., Wu, T., Sorich, M.J., Rowland,A. (2023). Analysis of Extracellular Vesicle and Contaminant Markers in Blood Derivatives Using Multiple Reaction Monitoring. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628.Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_20
8. The effect of disinfectant exposure in lung-derived EVs and inflammation
Kim, J.W., Jeong, M.H., Yu, H.T., Park, Y.J., Kim, H.S., Chung, K.H. (2023) Fibrinogen on extracellular vesicles derived from polyhexamethylene guanidine phosphate-exposed mice induces inflammatory effects via integrin β.Ecotoxicology and Environmental Safety 252: 114600 https://doi.org/10.1016/j.ecoenv.2023.114600
9. Characterisation of EV cargo in frail individuals in relation to race, sex, and poverty status
Byappanahalli, A.M., Noren Hooten, N., Vannoy, M. et al. (2023) Mitochondrial DNA and inflammatory proteins are higher in extracellular vesicles from frail individuals. Immun Ageing 20, 6 https://doi.org/10.1186/s12979-023-00330-2
10. Chemotherapeutics delivered via EVs have inhibitory effect in growth of pancreatic cancer cells
Klimova,D., Jakubechova, J., Altanerova, U., Nicodemou, A. et al. (2023) Extracellular vesicles derived from dental mesenchymal stem/stromal cells with gemcitabine as a cargo have an inhibitory effect on the growth of pancreatic carcinoma cell lines in vitro. Molecular and Cellular Probes 67:101894 https://doi.org/10.1016/j.mcp.2023.101894