Zeta potential measurement with TRPS


Measure the Zeta Potential of Individual Particles with TRPS


Zeta potential, which is indicative of particle surface charge, is an important and widely used method for characterising nanometer-sized objects in liquids, such as pharmaceuticals, viruses, liposomes and exosomes. The unique capability of TRPS to simultaneously measure particle size and zeta potential reproducibly on a particle-by-particle basis with high accuracy represents a novel approach for investigating and understanding nano-bio interactions and physicochemical properties of particle dispersions. In brief, TRPS measures electrokinetic and convective velocities of particulates and calculates their zeta potential, based on a linear relationship between zeta potential and electrophoretic mobility. The novel methodology can be readily applied to any nano-bio particulate system, in which the particles are dispersed in aqueous electrolyte solutions.


Measure the Zeta Potential of Individual Particles with TRPS


Zeta potential, which is indicative of particle surface charge, is an important and widely used method for characterizing nanometer-sized objects in liquids, such as pharmaceuticals, viruses, liposomes and exosomes. The unique capability of TRPS to simultaneously measure particle size and zeta potential reproducibly on a particle-by-particle basis with high accuracy represents a novel approach for investigating and understanding nano-bio interactions and physicochemical properties of particle dispersions. In brief, TRPS measures electrokinetic and convective velocities of particulates and calculates their zeta potential, based on a linear relationship between zeta potential and electrophoretic mobility. The novel methodology can be readily applied to any nano-bio particulate system, in which the particles are dispersed in aqueous electrolyte solutions.


True zeta potential distributions provide unbiased results

Obtain the required certainty in your particle research


Much more precise & reliable than DLS based measurement

Understand the subtle changes from different formulations


Simultaneous size & zeta potential measurement

Measure individual particles, on a particle-by-particle basis


Charge measurement in physiological-strength buffer

Measure and analyse particles in the medium that they will be used


Fine scale precision

Measure and analyse biochemical interactions and content in new ways, e.g. drug loading

True zeta potential distributions provide unbiased results


In a mixture, it is common to assume that all of the particles have the same zeta potential but this is often not the case. When particles have a polydisperse size and surface charge distributions, the most widely used technique (PALS/DLS) to measure the zeta potential becomes quite unreliable. The solution is to individually measure the electrophoretic mobility of a large enough number of single particles, which TRPS does very well. The electrophoretic mobility is converted to a zeta potential via their linear relationship. This results in zeta potential data that is unbiased by the size distribution and can be provided as a size vs charge plot or a charge vs number plot. That level of information is essential for sophisticated applications like nanomedicine development and nanomedicine QA. It can be used to further identify surface biomolecular properties or biomolecular activity.




Zeta Potential


Zeta Potential

True zeta-potential distributions provide unbiased results


In a mixture, it is common to assume that all of the particles have the same zeta potential but this is often not the case. When particles have a polydisperse size distribution, the most widely used technique (PALS/DLS) to measure the zeta potential becomes quite unreliable. The solution is to individually measure the electrophoretic mobility of a large enough number of single particles, which TRPS does very well. The electrophoretic mobility is converted to a zeta potential via a simple formula. This results in zeta potential data that is unbiased by the size distribution and can be provided as a size vs charge plot or a charge vs number plot. That level of information is essential for sophisticated applications like nanomedicine development and nanomedicine QA. It can be used to further identify surface biomolecular properties or biomolecular activity.


 



Much more precise and reliable than DLS based zeta measurement


Phase analysis light scattering (PALS), an ensemble technique based on laser doppler velocimetry, is the best known technology for the determination of zeta potential of nanoparticle suspensions. Although readily available, ensemble techniques (e.g. PALS), as opposed to single particle measurement techniques, such as TRPS, can only measure and calculate the average particle mobility and hence detailed single particle information is lost, in particular when measuring polydisperse samples. TRPS is the only available technology that provides simultaneous in-suspension information about particle size and zeta potential on a particle-by-particle basis, guaranteeing accurate analysis of multi-modal and polydisperse samples (see figure). Whilst a mixed sample of bare and carboxylated polystyrene spheres with equivalent sizes (~400 nm) but different zeta potentials was perfectly resolved with TRPS (red trace), the two particle populations could not be distinguished with PALS (Figure 1a, red trace).


Measure size & zeta potential simultaneously


Measuring size and zeta potential of particles simultaneously has incredible benefits for a wide range of applications and industries. TRPS is able to do this on a particle-by-particle basis with high reliability and reproducibility. It represents a new approach for understanding and researching the intrinsic behaviour of nanoscale distributions. Since these nanoparticle properties have been seen to play a central role in biological interactions, including influencinge, their uptake by the target tissues/cells, TRPS allows for the investigation and better understanding of things such as nanoparticle-based delivery of microRNA, which in turn could be used for many therapeutic applications, such as overcoming drug resistance, in cancer therapy and in diagnostics. TRPS instruments are also the only devices on the market that can do this simultaneously and accurately. The high-resolution single particle size and zeta potential characterisation will positively impact developmental nanomedicine by providing a better understanding of nano-bio interactions.

Size and Concentration



Measure size & zeta potential simultaneously


Measuring size and zeta potential of particles simultaneously has incredible benefits to a wide range of applications and industries. TRPS is able to do this on a particle-by-particle basis with high reliability and reproducibility. It represents a new approach for understanding and researching the intrinsic behaviour of nanoscale distributions. Since these nanoparticle properties have been seen to play a central role in biological interactions, including influencinge, their uptake by the target tissues/cells, TRPS allows for the investigation and better understanding of things such as nanoparticle-based delivery of microRNA, which in turn could be used for many therapeutic applications, such as overcoming drug resistance, in cancer therapy and in diagnostics. TRPS instruments are also the only devices on the market that can do this simultaneously and accurately. The high-resolution single particle size and zeta potential characterisation will positively impact developmental nanomedicine by providing a better understanding of nano-bio interactions.

Size and Concentration
 



Charge measurement in physiological-strength buffer


Particle dispersions and formulations are stabilized by electrostatic repulsion, steric hindrance, or a combination of these two forces. Particles will eventually aggregate in the absence of sufficient stabilisation. Researchers use zeta potential as an indicator of electrostatic stabilisation of particles. Zeta potential is a modelled quantity derived by measuring electrophoretic mobility of particles in suspension. Electrophoretic mobility is critically dependent on particle and solution properties (ionic strength, ionic composition, and viscosity). Thus, it’s important to perform zeta analysis for nanoparticles or nano-formulations in physiological buffer(s) designed for biological applications.
High-resolution single particle zeta analysis will provide an advanced understanding of particle behaviour in different pH and salt conditions and aid in monitoring particle corona evolution over time for biokinetic studies. Moreover, determination of accurate charge on each particle could provide potential insights into nano-bio interactions in varying physiological buffers, critical for determining particle stability and uptake; impacting the overall delivered particle dosage.



Fine scale precision


TRPS alone provides the means to distinguish particles through fine scale mapping of zeta potential of individual particles. The surface charge of membranous vesicles arise from the combined net charge of extrinsic moieties on the vesicle surface. Using TRPS, subtle changes in surface charge can be resolved as the membrane composition is altered. This can be readily demonstrated using liposomes where the composition is altered by changing the ratio of negatively charged DPMG relative to neutral zwitterionic lipid DSPC. As the percentage ratio of DPMG increases, the zeta potential of the liposome population becomes increasingly negative.
TRPS can also be used to monitor changes in zeta potential through particle-ligand interaction in real time. This is demonstrated below in the binding of biotinylated single stranded DNA (35 bases) to the surface of a streptavidin coated particle. The diffusion dependent binding reaction goes to completion within approximately 170 sec after the addition of DNA at 30 sec, the binding of the DNA coincides with a reduction in the zeta potential. The resolution limit was 10% of the oligo coverage. For example, the resolution limit was 44 oligos per particle for particles with a DNA/particle ratio of 400 (Fig C). The control reaction which uses streptavidin that has been enzymatically inactivated by proteinase K shows no DNA interaction. With longer oligos the sensitivity is increased.
TRPS provides researchers with the tool for advanced charge studies of particle-particle interactions, zeta based vesicle characterisation, receptor-ligand interactions that may result in altered charge of the carrier particle, charge reporting antibody-antigen reactions and aptamer based detection technologies.




Zeta Potential Measurement of DNA Interaction




Zeta Potential Measurement of DNA Interaction


Fine scale precision


TRPS alone provides the means to distinguish particles through fine scale mapping of zeta potential of individual particles. The surface charge of membranous vesicles arise from the combined net charge of extrinsic moieties on the vesicle surface. Using TRPS, subtle changes in surface charge can be resolved as the membrane composition is altered. This can be readily demonstrated using liposomes where the composition is altered by changing the ratio of negatively charged DPMG relative to neutral zwitterionic lipid DSPC. As the percentage ratio of DPMG increases, the zeta potential of the liposome population becomes increasingly negative.
TRPS can also be used to monitor changes in zeta potential through particle-ligand interaction in real time. This is demonstrated below in the binding of biotinylated single stranded DNA (35 bases) to the surface of a streptavidin coated particle. The diffusion dependent binding reaction goes to completion within approximately 170 sec after the addition of DNA at 30 sec, the binding of the DNA coincides with a reduction in the zeta potential. The resolution limit was 10% of the oligo coverage. For example, the resolution limit was 44 oligos per particle for particles with a DNA/particle ratio of 400 (Fig C). The control reaction which uses streptavidin that has been enzymatically inactivated by proteinase K shows no DNA interaction. With longer oligos the sensitivity is increased.
TRPS provides researchers with the tool for advanced charge studies of particle-particle interactions, zeta based vesicle characterisation, receptor-ligand interactions that may result in altered charge of the carrier particle, charge reporting antibody-antigen reactions and aptamer based detection technologies.



Start a conversation about your research




0
Countries Serviced

0+
Third Party Publications

0+
Organisations using Izon's Technology